The Best Rank-One Approximation Ratio of a Tensor Space
نویسنده
چکیده
Abstract. In this paper we define the best rank-one approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rankone approximation of any tensor in that tensor space and the norm of that tensor. This upper bound is strictly less than one, and it gives a convergence rate for the greedy rank-one update algorithm. For finite dimensional general tensor spaces, third order finite dimensional symmetric tensor spaces, and finite biquadratic tensor spaces, we give positive lower bounds for the best rank-one approximation ratio. For finite symmetric terrsor spaces and finite dimensional biquadratic tensor spaces, we give upper bounds for this ratio.
منابع مشابه
BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES
We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...
متن کاملComplex Tensors Almost Always Have Best Low-rank Approximations
Low-rank tensor approximations are plagued by a well-known problem — a tensor may fail to have a best rank-r approximation. Over R, it is known that such failures can occur with positive probability, sometimes with certainty: in R2×2×2, every tensor of rank 3 fails to have a best rank-2 approximation. We will show that while such failures still occur over C, they happen with zero probability. I...
متن کاملOn the character space of vector-valued Lipschitz algebras
We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...
متن کاملDynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors
We extend results on the dynamical low-rank approximation for the treatment of time-dependent matrices and tensors (Koch & Lubich, 2007 and 2010) to the recently proposed Hierarchical Tucker tensor format (HT, Hackbusch & Kühn, 2009) and the Tensor Train format (TT, Oseledets, 2011), which are closely related to tensor decomposition methods used in quantum physics and chemistry. In this dynamic...
متن کاملDynamical approximation of hierarchical Tucker and tensor-train tensors
We extend results on the dynamical low-rank approximation for the treatment of time-dependent matrices and tensors (Koch & Lubich, 2007 and 2010) to the recently proposed Hierarchical Tucker tensor format (HT, Hackbusch & Kühn, 2009) and the Tensor Train format (TT, Oseledets, 2011), which are closely related to tensor decomposition methods used in quantum physics and chemistry. In this dynamic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 32 شماره
صفحات -
تاریخ انتشار 2011